A Quick Tour of Computer Vision SAST Summer Training 2023

Kevin Zhang

THU CST

July 30th, 2023

- 1 Introduction
- 2 Basic Task: Image Classification
- 3 Recent Progress: Generation Models
- 4 Reference

- 1 Introduction
- 2 Basic Task: Image Classification
- 3 Recent Progress: Generation Models
- 4 Reference

Today's Goal

- Explore the applications of previously learned neural networks (e.g. CNN, Transformers) in basic computer vision tasks.
- Understand the fundamentals of cutting-edge generative models: VAE, GANs, and Diffusion Models.
- Explore the widely used open-source diffusion model codebase: StableDiffusion.
- Develop your interest and spark your inspiration :)

Wiki: Computer vision tasks include methods for **acquiring**, **processing**, **analyzing and understanding** digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information.

Note: Computer Vision ⊄ Deep Learning

Face detection / recognition

Self-driving cars

Human care

Medical image analysis

Remote sensing / earth observing

A WIDE range of computer vision tasks:

Basic Task: Image Classification

- Different modalities
 - **Image**
 - Video
 - 3D Object/Scene
 - Multi-modal (Vision, Language, Speech...)
- Different targets
 - Recognition
 - Segmentation
 - Detection
 - Stylization
 - Captioning
 - Generation

Today's Focus

A WIDE range of computer vision tasks:

- Different modalities
 - Image → Basic
 - Video
 - 3D Object/Scene
 - Multi-modal (Vision, Language, Speech...) → Exciting
- Different targets
 - Recognition → Basic
 - Segmentation
 - Detection
 - Stylization
 - Captioning
 - Generation → Exciting
 - · ..

- 1 Introduction
- 2 Basic Task: Image Classification

Introduction
CNN for Image Classification
Vision Transformer (ViT): Towards Larger Mode

- 3 Recent Progress: Generation Models
- 4 Reference

THU CST

- 1 Introduction
- 2 Basic Task: Image Classification Introduction CNN for Image Classification

- Recent Progress: Generation Models
- 4 Reference

Why Image Classification?

- Core computer vision task: make computer perceive the world
- Building blocks for other tasks: detection, captioning, and even AlphaGo...
- The first challenge that deep learning made great success over classical methods
- A good chance to review and get a deeper understanding of previously learned neural network architectures, such as CNN and Transformers

What's Image Classification?

(assume given a set of labels) {dog, cat, truck, plane, ...}

cat dog bird deer truck

Challenge for Image Classification

Challenge for Image Classification

So many different cats!

Challenge for Image Classification

So many different cats (or cat tails)!

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Opportunity: Big data

Imagenet ILSVRC

ImageNet Classification top-5 error (%)

(ロ) (回) (回) (目) (目) (回)

- 1 Introduction
- 2 Basic Task: Image Classification Introduction CNN for Image Classification Vision Transformer (ViT): Towards Larger Mode
- Recent Progress: Generation Models
- 4 Reference

Recap: CNN architecture

Scan the image Generate hierarchy of features

Recognize from high level features

Extract features: convolution layers + pooling layers + normalization layers

<ロ > ← □

Recap: Local Connectivity in CNN

Key assumption 1 (Locality): Assume local information is enough for feature extraction and recognition.

Recap: Parameter Sharing in CNN

Key assumption 2 (Shift invariance): If a feature is useful at one position, then it should also be useful at other positions.

AlexNet (2012)

GoogLeNet (Inception, 2014): Going deeper

Deeper networks, with computational efficiency

- 22 layers
- Efficient Inception modules
- The first one without FC layers
- Only 5 million parameters! 12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

ResNet (CVPR best paper, 2015): Going really deep

Key observation: Deeper models are hard to optimize.

- Idea:
 - Copying the learned layer from the shallow model
 - Setting additional layers to identical mapping
 - Solution: Instead of learning H(x) directly, learn the residual F(x) = H(x) - x.

ResNet (CVPR best paper, 2015): Going really deep

- ResNet architecture:
 - Stack residual blocks
 - Every residual block has two 3x3 conv layers
 - Periodically, double #filters and downsample spatially using stride 2 (/2 in each dimension)
 - Additional conv layer at the beginning
 - Global average pooling at the end (FC layer only to output classes)

Well-known CNN models that emerged between 2012 and 2017

Inception-v4 Inception-v3 ResNet-152 ResNet-50 VGG-16 VGG-19 ResNet-101 ResNet-34 Top-1 accuracy [%] GoogLeNet BN-NIN 60 BN-AlexNet 55 AlexNet 50 10 20 35 40 Operations (G-Ops)

Top I vs. Architectures

Top I vs. Operations, Size ∝ Parameters

搭积木? 知乎: 像 ResNet、SENet 这些网络是怎么想出来的?

- 1 Introduction
- 2 Basic Task: Image Classification Introduction CNN for Image Classification Vision Transformer (ViT): Towards Larger Model
- Recent Progress: Generation Models
- 4 Reference

Recap: Transformer

- Main Components:
 - Scaled Dot-product Attention
 - (Masked) Multi-head Attention
 - Position-wise FFN
 - Residual Connections
 - Layer Normalization
 - Positional Encoding
- Architecture:
 - Encoder →
 A new way to extract features!
 - Decoder with Masking
 - Encoder-Decoder Attention

ViT: An image is worth 16*16 words

Simple idea: Split the image into fixed-size patches and treat the image as a sequence of patches! (The same Transformer Encoder architecture as before)

$$\mathbf{x}^{H \times W \times C} \to \mathbf{x}_{p}^{N \times (P^{2} \cdot C)} \to \mathbf{z}^{N \times D}$$

ViT: An image is worth 16*16 words

- Less inductive bias → One architecture for multi-modal data and multiple downstream tasks!
- Easy to scale up! (Demanding for extremely large scale dataset, model regularization and data augmentation)

- 1 Introduction
- 2 Basic Task: Image Classification
- 3 Recent Progress: Generation Models
 Transformer-based Auto-regressive Models
 Generative Adversarial Networks (GANs)
 Diffusion Models
- 4 Reference

AIGC: A new opportunity

Kevin Zhang

THU CST

- 1 Introduction
- 2 Basic Task: Image Classification
- Recent Progress: Generation Models Transformer-based Auto-regressive Models Generative Adversarial Networks (GANs) Diffusion Models
- 4 Reference

Transformer again: Unify texts and images

Challenges for applying GPT-like large models to image generation:

- Huge computation consumption if generating in pixel space (A single image might have tens of thousands of pixels)
- Two-dimensional information is probably ignored in sequence generation

Initial solution: Reduce dimensions and generate in the latent space

Generative Modeling

Learn the probability distribution $p_{\theta}(x)$ that generates the data.

Variational Auto-Encoder (VAE)

Training:

- Encoder output should match the prior distribution, e.g. $\mathcal{N}(0,1)$.
- **Decoder** output should reconstruct the input distribution.
 - Throw the encoder away, sample from the prior distribution and use the decoder to get output image.

Variational Auto-Encoder (VAE)

You want more math? (For those interested, not required)

Goal: Maximize $p_{\theta}(x) \to \text{Objective}$: Evidence lower Bound, ELBO (θ) : Decoder parameters, ϕ : Encoder parameters)

$$\begin{split} \log p_{\theta}(x_i) &= \mathbb{E}_{z \sim q_{\phi}(z|x_i)}[\log p_{\theta}(x_i)] \\ &= \mathbb{E}_z[\log \frac{p_{\theta}(x_i|z)p_{\theta}(z)}{p_{\theta}(z|x_i)}] \\ &= \mathbb{E}_z[\log p_{\theta}(x_i|z) \frac{p_{\theta}(z)}{q_{\phi}(z|x_i)} \frac{q_{\phi}(z|x_i)}{p_{\theta}(z|x_i)}] \\ &= \mathbb{E}_z[\log p_{\theta}(x_i|z)] - \mathbb{E}_z[\log \frac{q_{\phi}(z|x_i)}{p_{\theta}(z)}] + \mathbb{E}_z[\log \frac{q_{\phi}(z|x_i)}{p_{\theta}(z|x_i)}] \\ &= \mathbb{E}_z[\log p_{\theta}(x_i|z)] - KL(q_{\phi}(z|x_i)||p_{\theta}(z)) \\ &+ KL(q_{\phi}(z|x_i)||p_{\theta}(z|x_i)) \\ &\geq \mathbb{E}_z[\log p_{\theta}(x_i|z)] - KL(q_{\phi}(z|x_i)||p_{\theta}(z)) \end{split}$$

DALL-E (OpenAI)

CogView (Tsinghua)

The framework of CogView. [ROI1], [BASE1], etc., are seperator tokens.

Pros and cons of VAE

Pros:

- Principled approach to generative models with solid mathematics basis.
- Allow inference of encoder $q_{\phi}(z|x_i)$, can be useful low-dimension feature representation for other tasks and models.

Cons:

- Evidence Lower bound: an over-simplified approximation.
- Intractable for complex distributions.
- Blurrier and lower quality than GANs and Diffusion models.

- Introduction
- 2 Basic Task: Image Classification
- 3 Recent Progress: Generation Models Transformer-based Auto-regressive Models Generative Adversarial Networks (GANs) Diffusion Models
- 4 Reference

GAN: A two-player game

• The center of GAN is an adversarial loss! \rightarrow An idea easy to generalize.

Conditional GAN

• Provide condition information to indicate what to generate.

StyleGAN

• Latent $\mathbf{z} \to \text{style}$ features, noise $\to \text{content}$ features (diverse details).

<ロ > ← □

DragGAN (SIGGRAPH 2023)

 Utilizing the continuous and discriminative latent space of StyleGAN to apply natural and meaningful editing.

Pros and cons of GAN

Pros:

- High-quality generated images (enough to fool the discriminator and also your eyes!)
- High sampling efficiency!
- Relatively continuous latent space (which stores meaningful semantic information).

Cons:

- Hard to train! (A minimax game) \rightarrow Relatively difficult to scale up.
- Mode collapse (Relatively low diversity) → A lot of follow-up works to mitigate the problem, e.g. WGAN.

- 1 Introduction
- 2 Basic Task: Image Classification
- 3 Recent Progress: Generation Models Transformer-based Auto-regressive Models Generative Adversarial Networks (GANs) Diffusion Models
- 4 Reference

Denoising Diffusion Probabilistic Model (DDPM)

Denoising diffusion models consist of two processes:

- Forward diffusion process: Adds noise to input gradually.
- Reverse denoising process: learns to generate by denoising.

Training

 x_0 : clean image

 ε : noise

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ --- sample clean image
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$

Noise

- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ --- sample a noise
- 5: Take gradient descent step on

6: **until** converged Noisy image
$$\overline{\alpha}_1, \overline{\alpha}_2, \dots \overline{\alpha}_T$$
Target Noise $\overline{\alpha}_1, \overline{\alpha}_2, \dots \overline{\alpha}_T$

predictor

◆□ > ◆□ > ◆ = > ◆ = > ● のQで

Training

Sample t

What you imagine...

Actually...

Inference

Algorithm 2 Sampling

 x_T

1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

2: **for** t = T, ..., 1 **do**

3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

 $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \tilde{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$

5: end for

6: return \mathbf{x}_0

 $\bar{\alpha}_1, \bar{\alpha}_2, \dots \bar{\alpha}_T$ $\alpha_1, \alpha_2, \dots \alpha_T$

You want more math? (For those interested, not required at all)

- Lil's blog: What are Diffusion Models?
- 知乎:扩散模型之 DDPM
- My own notes (uploaded in Tsinghua Cloud)

VAE v.s. DDPM

- One step v.s. N steps: Efficiency & Quality tradeoff
- Latent low-dimension representation v.s. Gaussian noise of the same shape

Stable Diffusion: Conditional diffusion in latent space

 Try it on huggingface: https://huggingface.co/spaces/ stabilityai/stable-diffusion

マロトマ部トマミトマミト ミーからの

Something practical: Stable Diffusion open-source codebase

- Github repo: https://github.com/CompVis/stable-diffusion
- Built on PyTorch Lightning
- Widely used by mountains of downstream tasks

Usage: Inference

① Create conda environment:

```
1 conda env create -f environment.yaml conda activate ldm
```

② Download checkpoints from huggingface and put or link it in /models folder:

```
1  | mkdir -p models/ldm/stable-diffusion-v1/
2  | ln -s <path/to/model.ckpt>
3  | models/ldm/stable-diffusion-v1/model.ckpt
```

- **3** Edit config file in the /config folder
- 4 Sample images:

```
1 python scripts/txt2img.py --prompt "..."
```

Usage: Training

```
1 python main.py -t -b <config-files> -l <log-file>
```

(The preceding procedure is the same as inference)

A Quick Tour of Computer Vision

Code structrue

- 1 Introduction
- 2 Basic Task: Image Classification
- 3 Recent Progress: Generation Models
- 4 Reference

Reference and further reading

- All the reference papers are embedded as a hyperlink in the corresponding slide title.
- Some of the pictures in this slide are credited to the following wonderful courses:
 - Stanford University CS231n: Deep Learning for Computer Vision
 - National Taiwan University: Machine Learning by Hung-Yi Lee
 - Tsinghua University: Deep Learning by Mingsheng Long

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 9 年 9 9 9 ()