A "Quick" Introduction to Machine Learning

Outline

- Introduction & Methodology
- MLP: Feed Forward & Back Propagation
- Further Discussion
 - Model Architecture: Convolutional Neural Network
 - Loss Function: Regression or Classification
 - Optimization: Stochastic Gradient Descent

Find an algorithm to this Question!

Input

Output: Mountain / Sky / Water

NO, YES, YES; YES, YES, NO;

YES, YES, YES; NO, NO, YES.

Machines could tackle problems with deterministic solution

程序设计基础_最长上升子序列

问题描述

给定一个长为 n 的序列, 求它的最长上升子序列的长度。

输入格式

输入第一行包含一个整数 n。 第二行包含 n 个整数, 为给定的序列。

输出格式

输出一个非负整数,表示最长上升子序列的长度。

样例输入

5 13254

样例输出

з

数据规模和约定

0 < n ≤ 1000
 每个数不超过 10⁶

CST2021F 1-1 A+B problem

描述

抱歉,这题实际是 A*B problem。

邓俊辉老师的作业常常过于简单,数据类型只需使用 int。助教们一致认为,向同学们介绍 Python 中自带的长整型是十分有必要的。例如,它可以计算几百位的整数乘法。但是,在 介绍长整型之前,助教决定让你自己实现一遍长整型乘法,以加深对它的理解。

输入

输入共包含 n + 1 行, 第 1 行包含一个整数 n, 表示你需要计算 n 组乘法。 接下来 n 行, 每行包含两个非负整数 a 和 b。

输出

输出共包含 n 行,请对于每一组输入的 a、b,输出他们的乘积。

输入样例

3 1 1 2 2 123123 789789

*此样例是第1个测试点。

*本课堂的编程作业中,对于非全 int 输入的题目,有的会把一个样例作为第 1 个测试点方便调试。

That means, given a particular input, the algorithm will always produce the same output.

But what about those problems?

1. Problems with deterministic solution but not empirically solvable

- Classification problems

- 2. Problems even without a deterministic solution ...
 - What shall we eat tonight?
 - It's up to you.
 - > It may depend on the context…?

- Generation problems

We learn to know the world, so do machines!

But, how can we teach machines to learn?

1. Hand-crafted features

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"

Weaknesses:

- They need domain specific knowledge of human
- They can never surpass their human teachers

Role of AI Scientists: teach AI how to learn.

But, how can we teach machines to learn?

2. Numerical Solution

➤ We fit_{拟合} on data !

What is a <u>fit</u> problem?

【例1】有一位同学家开了一个小卖强,他为了研究气温对热饮销售的影响,经过统计, 得到一个卖出热饮杯数与当天气温的对比表;

摄氏温 度(℃)	-5	0	4	7	12	15	19	23	27	31	36
热饮杯 数	156	150	132	128	130	116	104	89	93	76	54

(1) 画出散点图;

(2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?

(3) 求回归方程;

(4) 如果某天的气温是2℃, 预测这天卖出的热饮杯数.

解: (1) 散点图如图 1-9-8 所示.

(2)从图1-9-8中看到,各点散布在从左上角到右下角的区域里,因此,气温与 热饮销售杯数之间成负相关,即气温越高,卖出去的热饮杯数越少.

(3) 从散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式①求 出回归方程的系数.

利用计算器容易求得回归方程为ŷ=-2.352x+147.767.

(4) 当 x=2 时, ŷ=143.063.因此,某天的气温为 2℃时,这天大约可以卖出 143 杯热饮.

We teach machines to learn numerically!

(1) Define a mathematical model.*e.g.* y=ax+b

(2) Determine an approach to evaluate which model is **better** *Namely we define a <u>loss function</u> for each model*

(3) Propose an optimization method to find the "best" model *Go from the current model parameters to better ones: LEARNING!!!*

What is learning?

We teach models to learn numerically!

【例1】有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计, 得到一个卖出热饮杯数与当天气温的对比表:

援 度	₹(℃)	-5	0	4	7	12	15	19	23	27	31	36
热数	x饮杯	156	150	132	128	130	116	104	89	93	76	54

(1) 画出散点图:

(2) 你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?

(3) 求回归方程:

(4) 如果某天的气温是2℃, 预测这天卖出的热饮杯数.

解: (1) 散点图如图 1-9-8 所示.

图 1-9-8

(2)从图1-9-8中看到,各点散布在从左上角到右下角的区域里,因此,气温与 热饮销售杯数之间成负相关,即气温越高,卖出去的热饮杯数越少.

(3) 从散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式①求 出回归方程的系数.

利用计算器容易求得回归方程为 \hat{v} = -2.352x+147.767.

(4) 当 x=2 时, ŷ=143.063.因此, 某天的气温为 2℃时, 这天大约可以卖出 143 杯热饮.

1. We define model: ability to express

2. We define loss function: which model is better

- Loss function: the "difference" of current model to the ideal one
- L1 Loss: | current_result ideal_result |
- L2 Loss: (current_result ideal_result)^2
- Cross Entropy Loss
 - To measure the difference between two possibility distributions

$$H(p,q) = \sum_{x} p(x) \cdot log\left(\frac{1}{q(x)}\right)$$

3. We propose optimization methods

线性最小二乘 – 法方程法
■ 法方程方法: 求解Gx = b
$\boldsymbol{G} = \begin{bmatrix} \langle \varphi_1, \varphi_1 \rangle & \langle \varphi_2, \varphi_1 \rangle & \cdots & \langle \varphi_n, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_2 \rangle & \langle \varphi_2, \varphi_2 \rangle & \cdots & \langle \varphi_n, \varphi_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \varphi_1, \varphi_n \rangle & \langle \varphi_2, \varphi_n \rangle & \cdots & \langle \varphi_n, \varphi_n \rangle \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} \langle f, \varphi_1 \rangle \\ \langle f, \varphi_2 \rangle \\ \vdots \\ \langle f, \varphi_n \rangle \end{bmatrix}$
$A = \begin{bmatrix} \varphi_1(t_1) & \varphi_2(t_1) & \cdots & \varphi_n(t_1) \\ \varphi_1(t_2) & \varphi_2(t_2) & \cdots & \varphi_n(t_2) \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_1(t_m) & \varphi_2(t_m) & \cdots & \varphi_n(t_m) \end{bmatrix} A = \begin{bmatrix} \varphi_1 & \varphi_2 & \cdots & \varphi_n \end{bmatrix}$ $A^T = \begin{bmatrix} \varphi_1^T \\ \varphi_2^T \\ \vdots \\ \varphi_1^T \\ \vdots \\ \varphi_n^T \end{bmatrix} \Longrightarrow G = A^T A$ $B = A^T f$
□ 形成矩件A; 得到A' $Ax = A' f$; 解之 A列满秩 □ 若表格函数 $\varphi_1(t), \dots, \varphi_n(t)$ 线性无关, 法方程存在唯一解
10 million (10 mil
线性最小二乘 Excel例子
 Ø6.5: 一组数据如下表,用<u>适当的函数</u>对它们进行拟合 <i>t_i</i> 1.00 1.25 1.50 1.75 <i>y_i</i> 5.10 5.79 6.53 7.45 8.46 <i>y_i</i> 1.6292 1.7561 1.8764 2.0082 2.1353 (#线性拟合问题怎么用 线性最小二乘?)
• $M6.5:$ - $43 imes H imes L imes $
•
■ 例6.5: 一组数据如下表,用适当的函数对它们进行拟合 t_1 1.00 1.25 1.50 1.75 2.00 y_i 5.10 5.79 6.53 7.45 8.46 \tilde{y}_i 1.6292 1.7561 1.8764 2.0082 2.1353 ■ 解: 在直角坐标系里绘出这些数据点,根据其分布趋势, 采用指数函数来描述: $y \approx x_1 e^{x_2 t}$ $\tilde{y} = \tilde{x}_1 + x_2 t$ $\tilde{y} = \tilde{y} = \tilde{y} + \tilde{y} = \tilde{y} + \tilde{y} + \tilde{y} + \tilde{y} = \tilde{y} + $

Outline

- Introduction & Methodology
- MLP: Feed Forward & Back Propagation
- Further Discussion
 - Model Architecture: Convolutional Neural Network
 - Loss Function: Regression or Classification
 - Optimization: Stochastic Gradient Descent

Task: MNIST Classification

Input: 28x28 Image Output: 1 of 10 class

MLP: Architecture

$$y = o(w \cdot x + b)$$

Here:

$$o(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$

MLP: Calculate Loss

MLP: How to optimize

$$w^* = \arg\min_w L(w)$$

• Consider loss function L(w) with one parameter w:

MLP: Back Propagation (Recap)

MLP: Back Propagation (Recap)

$$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C}{\partial a^{(L)}}$$
$$\frac{\partial C_0}{\partial a^{(L)}} = 2(a^{(L)} - y)$$
$$\frac{\partial a^{(L)}}{\partial z^{(L)}} = \sigma'(z^{(L)})$$
$$\frac{\partial z^{(L)}}{\partial w^{(L)}} = a^{(L-1)}$$

$$C_{0} = (a^{(L)} - y)^{2}$$

$$z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

$$a^{(L)} = \sigma(z^{(L)})$$

$$a^{(L-1)} \qquad a^{(L)} \qquad y$$

MLP: Chain Rule in Computational Graph

MLP: Chain Rule in Computational Graph

- We perform **topological sorting** on the computational graph obtained by the forward propagation process
 - 1. Find a node with zero out-degree
 - 2. Back propagate its gradient to its parent nodes in an accumulative manner
 - 3. Remove the node from computational graph

MLP: Chain Rule in Computational Graph

Luckily, we don't need to calculate gradients ourselves.

Deep learning frameworks like PyTorch have implemented this for us, you can look up to Autograd ©

Outline

- Introduction & Methodology
- MLP: Feed Forward & Back Propagation
- Further Discussion
 - Model Architecture: Convolutional Neural Network
 - Loss Function: Regression or Classification
 - Optimization: Stochastic Gradient Descent

Convolutional Neural Network

- Intuitions
 - Translational or flip equivariance

characteristics are held by objects.

- Sometimes we don't care where it appears in the image.
- We only care about the fact that whether an object appears or not.
- It is too costly to use a MLP for this \cdots

Convolutional Neural Network

- 1. Conv Layer
 - To detect the existence of Karyl [1]

- •2. Max Pooling Layer
 - To aggregate the information whether <u>Karyl</u> [1] exists or not in the local reception

[1] Cygames et.al. Princess Connect! Re: Dive. Google Play 2018.

输出(匹配结果)

输入

输出(匹配结果)

输出(匹配结果)

输出(匹配结果)

CNN: Extracting Edges過緣

विषेत्र
विषेत्व व्ये व्ये व्ये व्ये व्ये व्ये व्ये व्
विषेत्वे व्ये व्ये व्ये व्ये व्ये व्ये व्ये व
विषेत्वे व्ये व्ये व्ये व्ये व्ये व्ये व्ये व
न्त्र

卷积核

Convolutional Neural Network: Hyperparameters

- Kernel Size (3 x 3 in the illustration)
- Padding
- Stride
- #in_channels
- #out_channels

Convolutional Neural Network: Max Pooling Layer

- Pooling Window Size (3 x 3 in the illustration)
- Padding
- Stride

 3	
8	

最大池化

步长: 2

窗口: 2×2

6

8

7

4

3

输入为一个通道

Convolutional Neural Network: Example LeNet

Convolutional Neural Network: Example VGG-16

Outline

- Introduction & Methodology
- MLP: Feed Forward & Back Propagation
- Further Discussion
 - Model Architecture: Convolutional Neural Network
 - Loss Function: Regression or Classification
 - Optimization: Stochastic Gradient Descent

Loss Function: Regression

• To predict a certain value from inputs.

Loss Function: Classification

- Cross Entropy Loss
- (Binary) Cross Entropy Loss

$$H(p,q) = \sum_{x} p(x) \cdot log\left(\frac{1}{q(x)}\right)$$

Question: If q is predicted distribution and p is the distribution of label / ground truth, then when does $H(p,q) = -\sum_{x} p(x) \ln q(x)$ achieves its minimum?

- Make the assumption that both p and q are defined on finite sets
 - Fix p as it's ground truth, use *Lagrange multiplier* to find which vector q minimize the function. $\min H(q) = -(p_1 \ln q_1 + p_2 \ln q_2 + \dots + p_n \ln q_n)$

$$\sum_{i=1}^n q_i=1, \ 0\leq q_i\leq 1.$$

Outline

- Introduction & Methodology
- MLP: Feed Forward & Back Propagation
- Further Discussion
 - Model Architecture: Convolutional Neural Network
 - Loss Function: Regression or Classification
 - Optimization: Stochastic Gradient Descent

Mini-batch Stochastic Gradient Descent

• Advantage of (3)

- Compared to (1)
 - computationally more efficient

- Compared to (2)
 - Denoising with multiple items in batch

Outline

- Introduction & Methodology
- MLP: Feed Forward & Back Propagation
- Further Discussion
 - Model Architecture: Convolutional Neural Network
 - Loss Function: Regression or Classification
 - Optimization: Stochastic Gradient Descent

PyTorch: Dive into Deep Learning

- Strong recommendation:
- https://tangshusen.me/Dive-into-DL-PyTorch/#/

- We'll learn about…
 - Dataset & DataLoader
 - Model declaration
 - Loss functions
 - Optimizer

Further study or further research

- Material Recommendations:
 - Machine Learning online courses led by Hung-yi Lee
 - 2017: https://www.bilibili.com/video/BV13x411v7US/
 - 2022: <u>https://www.bilibili.com/video/BV1Wv411h7kN/</u>
 - CS231n: Deep Learning for Computer Vision
 - CS224n: Natural Language Processing with Deep Learning
 - D2DL: <u>https://tangshusen.me/Dive-into-DL-PyTorch/</u>
- Also, laboratories are the best place for your research $\ensuremath{\textcircled{\odot}}$
 - Meet the state-of-the-art technologies!

Questions?